Stationary patterns of the stage-structured predator-prey model with diffusion and cross-diffusion
نویسندگان
چکیده
Keywords: Predator–prey model Stage-structure Stability Cross-diffusion Non-constant positive steady states a b s t r a c t This paper is concerned with the reaction diffusion version with homogeneous Neumann boundary conditions of a stage-structured predator–prey model. We first show that the nonnegative constant steady states are globally stable, which implies that corresponding elliptic system has no non-constant positive solutions. When we introduce the cross-diffusion, it can be shown that the strongly coupled version has non-constant positive solutions. This shows that the cross-diffusion may cause the existence of non-constant positive steady states.
منابع مشابه
Dynamical behavior of a stage structured prey-predator model
In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...
متن کاملHopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کاملDynamics of an eco-epidemic model with stage structure for predator
The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملGlobal stability and stationary pattern of a diffusive prey-predator model with modified Leslie-Gower term and Holling II functional response
This paper is concerned with a diffusive prey-predator model with modified Leslie-Gower term and Holling II functional response subject to the homogeneous Neumann boundary condition. Firstly, by upper and lower solutions method, we prove the global asymptotic stability of the unique positive constant steady state solution. Secondly, introducing the cross diffusion, we obtain the existence of no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical and Computer Modelling
دوره 54 شماره
صفحات -
تاریخ انتشار 2011